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Introduction: Fractional Calculus is a generalization 
of ordinary differentiation and integration to an 
arbitvary order. In this paper we study to fractional 
boundary value problem. 
  

 
   

Where  is a 

caratheodory function first we recall 
fractionalintegral and derivatives operators: 
Definition 1.1. ([5], [8], [7]) Let  ba a function 
defined on (0, +∞). The left and right Riemann – 
Liouville fractional integrals of order α  0 for a 
function  denoted by +  and - , respectively, 
are defined by 

  +  (t) =  (s) 

ds, t  (0, + ∞), 
And  

  +  (t) =  

(s) ds, t  (0, + ∞), 
Provided that the right – hand side is pointwise 
defined on (0, + ∞); here T (α) is the gamma 
function. 
Definition 1.2: ([5], [8], [7]) Let  be a function 
defined on (0, +∞). For  
N – 1 ≤ α  n (n  N*), the left and right Riemann – 
Liouville fractional derivatives of order α for a 
function  denoted by +  and  respectively, 
are defined by  

+ (t) = +u(t) 

=  

 
And  

-u(t) =    u(t) 

 = u 

(s) ds, t  (0, +  
Provided that the right – hand side is pointwise 
defined. 
In particular for α=n, u(t) = 

 
Proposition 1.1. [5] If  

 

  

 
  

 

With  

Now we introduce a new space which is suitable for 
the study of our fractional BVP. Let. 

 
With the natural norm 

 
Let the space  

 

 

And endowed with the norm 

  ||u||  

Where the function p :[0, +  is 
continuous and satisfies 

 

We put 

M=  

Throughout this paper we assume p satisfies these 
conditions. Using the same idea as in [5] one can 
casily prove the following proposition. 
Proposition 1.2: [5] If u

 
U(+  

 

Using Proposition 1.2. wo now define a weak solution 
of problem (1.1). 
Definition 1.3.: A weak solution of the fractional 
boundary value problem (1.1) is given by a solution of 
the following variational formula. 
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Now we recall some information for the literature 
needed in this paper. 
Definition 1.4.: [9] Let X be a Banach space. An 
operatior A : X  which satisfies. 

 
For any u,  is called a monotone operator. An 
operator A is called strictly monotone it for u  
striet inequality holds in (1.3). An operatior A is called 
strongly monotone if there exists C  such that. 

 
For any u,  It is clear that a strongly monotone 
is strictly monotone. 
Detinition 1.5. [9] Let A : X  be an operator on 
the real Banach  
space X. 
(a) A is said to be demicontinuous if  

 
(b)  A is said to be hemicontionus if the real function. 

t  is continuous on [0.1] for al u, ν, 

  
(c) A is said to be coercive if  

 

Remark 1.1. [4] It is easy to see that for monotone 
operatior A : X  
With Dom (A) = X, demicontinuity and 
hemicontinuity are equivalent. 
Theorem 1.3. [6] (Minty-Browder) Let X be a 
reflexive real Banach space. 
Let A : X  be an operatior which is bounded, 
hemicontious, coercive and monotone on the space 
X. Then, the equation Au = f has at least one solution 
u  for each f  If a is strictly monotone then the 
solution is unique. 
2. Main Result: 
We begin with the space  
Proposition 2.1.  is a Banach space. 
Proof. Let (  be a Causchy sequence in 

 Then (  
(  are Cauchy sequences in  
From (1.2) we have ||  
which implies that 

||  

As n, m  is a Banach space, 
there exist functions  

 such that 
 

n  We now show that  From 
Proposition 1.2, we have 

 
And then by using the definition of the inner product 
in  we obtain that 
  

 
And so 

 is a Banach space. 
Lemma 2.2. The operator 

T : 

 
 

Is an isometric isomorphic mapping. 
Proof. It is clear that T is a linear operatior and we 
now show that T conserves norms, i.e. 

   

Indeed, we have 
||(u,  

  
     
Proposition 2.3.  is a reflexive space. 
Proof. Since,  is a reflexive Banach 
space, the Cartesian space 

 
Is also a reflexive Banach space with respect to the 
norm. 

||u||

 
Then 
  T : 

 
u  

is an isometric isomorphic. So T ( is a 
closed subspace of  
and by [[2], Theorem 4.10.5] then T(  is 
reflexive. Consequently  

 is also reflexive (see[[2], Lemma 4.10.4]). 
Proposition 2.4  is a separable space. 

Proof. Since,  is a separable Banach 
space, the Cartesian space 

 
Is also a separable Banach space with respect to the 
norm. 

||u||  

Then, the space T(  is also separable 
(see [1], Proposition 
111.22). Morcover, the operaor 

T :  
u  

is an isometric isomorphic, so  is a 
separable space. 
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Lemma 2.5. For all u  we have that 

 embeds continuously in  i.e., 

   

Proof. For all u  

U(t)=  

So 

  P(t)u(t)=p(t)  

Which implies from the Cauchy-Schwartz inequality 

 

 

 

 

 

Then  
 ||u||  

=  

   

And so, 

||u||  

From the definition of the norm in , it is 
easy to see that   
Proposition 2.6.  embeds continuously in 

 
To prove the compactness embedding of 

 we follow the ideas in [3]. 

Lemma 2.7.[3] I.ct D  be a bounded set. 

Then D is relatively compact if the following 
conditions hold. 
(a) D is equicontinuous on any compact sub-
interval of  
 

 
|

 
(b) Dis equiconvergent at +  i.e., 

 

 
 
Theorem 2.8.The embedding 

   

Is compact. 
 Proof. Let D  be a bounded set. 
Then it is bounded in  

 by Lemma 2.5. Let R  be such that for 

all  

We will apply Lemma 2.7. 
(a) D is equicontinuous on every compact 
interval of  

Let  where J is 
a compact sub-interval and by the Cauchy-
Schwarz inequality, we have 

|p(t)

 

-  

 

-  

 

+   

 

 

 

-  

So we have  

 

 

+  

 

 +  

 
As      
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