
A SURVEY ON WARNING BIRD: A NEAR REAL-TIME DETECTION SYSTEM FOR
SUSPICIOUS URLS IN TWITTER STREAM

DR. MD.ALI HUSSAIN, N.NUTHAN, K.SUDHEER, CH.UDAYA MANI TEJA

Abstract: Twitter is prone to malicious tweets containing URLs for spam, phishing, and malware distribution.
Conventional Twitter spam detection schemes utilize account features such as the ratio of tweets containing
URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are
ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL
detection schemes utilize several features including lexical features of URLs, URL redirection, HTML content,
and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. In
this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system
investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited
resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop
methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their
suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier
using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We
also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.

Keywords: suspiciously, Twitter, URL redirection, conditional redirection, classification.

Introduction : Twitter is a famous social networking
and information sharing service [2] that allows users
to exchange messages of fewer than 140-character,
also known as tweets, with their friends. When a user
Alice updates (or sends) a tweet, it will be distributed
to all of her followers who have registered Alice as
one of their friends. Instead of distributing a tweet to
all of her followers, Alice can also send a tweet to a
specific twitter user Nuthan by mentioning this user
by including @Nuthan in the tweet. Unlike status
updates, mentions can be sent to users who do not
follow Alice. When Twitter users want to share a URL
with friends via tweets, they usually use URL
shortening services [3] to reduce the URL length
since tweets can contain only a restricted number of
characters. Bit.ly and tinyurl.com are widely used
services, and Twitter also provides a shortening
service t.co. Owing to the popularity of Twitter,
malicious users often try to find a way to attack it.
The most common forms of Web attacks, including
spam, scam, phishing, and malware distribution
attacks, have also appeared on Twitter. Because
tweets are short in length, attackers use shortened
malicious URLs that redirect Twitter users to external
attack servers [4]–[9]. To cope with malicious tweets,
several Twitter spam detection schemes have been
proposed. These schemes can be classified into
account feature-based [6], [10]–[12], relation feature-
based [13], [14], and message feature-based [15]
schemes. Account feature-based schemes use the
distinguishing features of spam accounts such as the
ratio of tweets containing URLs, the account creation
date, and the number of followers and friends.
However, malicious users can easily fabricate these
account features. The relation feature-based schemes

rely on more robust features that malicious users
cannot easily fabricate such as the distance and
connectivity apparent in the Twitter graph.
Extracting these relation features from a Twitter
graph, however, requires a significant amount of time
and resources as a Twitter graph is tremendous in
size. The message feature-based scheme focused on
the lexical features of messages. However, spammers
can easily change the shape of their messages. A
number of suspicious URL detection schemes [4]
have also been introduced. They use static or
dynamic crawlers, and they may be executed in
virtual machine honeypots, such as Capture-HPC ,
HoneyMonkey , and Wepawet, to investigate newly
observed URLs. These schemes classify URLs
according to several features including lexical
features of URLs, DNS information, URL redirections,
and the HTML content of the landing pages.
Nevertheless, malicious servers can bypass an
investigation by selectively providing benign pages to
crawlers. For instance, because static crawlers usually
cannot handle JavaScript or Flash, malicious servers
can use them to deliver malicious content only to
normal browsers. Even if investigators use dynamic
crawlers with (almost) all of the functionalities of real
browsers, malicious servers may be able to recognize
them through their IP addresses, user interaction,
browser fingerprinting, or honey client detection
techniques. Malicious servers can also employ
temporal behaviors providing different content at
different times—to evade an investigation .In this
paper, we propose WARNINGBIRD, the heels of the
widespread adoption of web services such as social
networks and URL shorteners, scams, phishing and
malware have become regular threats. Despite

Engineering Sciences International Research Journal Volume 1 Issue 2 (2013) ISSN 2320-4338

 International Multidisciplinary Research Foundation 265

extensive research, email-based spam filtering
techniques generally fall short for protecting other
web services. To better address this need, we present
Novel real-time system that crawls URLs as they are
submitted to web services and determines whether
the URLs direct to spam. We evaluate the viability of
novel and the fundamental challenges that arise due
to the diversity of web service spam. We show that
Novel approach can provide accurate, real-time
protection, but that the underlying characteristics of
spam do not generalize across web services. In
particular, we find that spam targeting email
qualitatively differs in significant ways from spam
campaigns targeting Twitter. We explore the
distinctions between email and Twitter spam,
including the abuse of public web hosting and
redirect or services. Finally, we demonstrate
Monarch’s scalability, showing our system could
protect a service such as Twitter—which needs to
process 1 million URLs/day
Case Study : 2.1 blackraybansunglasses.com
We consider blackraybansunglasses.com, which is a
suspicious site associated with spam tweets. We first
encountered this site in April 2011 and it was active
until August 2011. We used a one percent of a sample
of tweets collected on July 11,2011, to conduct an in-
depth analysis of the site blackraybansunglasses.com
has a page, redirect.php, which conditionally
redirects users to random spam pages. It uses a
number of different Twitter accounts and shortened
URLs to distribute its URL, to other Twitter users.
According to our dataset, it uses 6,585 different
Twitter accounts and shortened URLs, and occupies
about 2.83% of the sampled 232,333 tweets with URLs.
When a user clicks on one of the shortened URLs
such as bit.ly/raCz5i distributed by Zarzu he or she
will be redirected to a private redirection, such as
beginnersatlanta.tk, which seems to be managed by
the operator of blackraybansunglasses.com. The user
will then be repeatedly goes to
bestfreevideoonline.info. The redirection site
blackraybansunglasses.com evaluates whether its
visitors are normal browsers or crawlers using several
methods, including cookie and user-agent checking.
When it is sure that a current visitor is a normal
browser, it redirects the visitor to
forexstrategysite.com, which then finally redirects
him or her to random spam pages. When
blackraybansunglasses.com determines that a current
visitor is not a normal browser, it simply redirects the
visitor to google.com to avoid investigation.
Therefore, crawlers may not be able to see
forexstrategysite.com or the further spam pages.
Another interesting point about
blackraybansunglasses.com is that it uses the Twitter
Web interface. Conventional Twitter spam detection

schemes usually assumed that many spammers would
use Twitter APIs to distribute their spam tweets.
Advanced Twitter spammers, however, no longer rely
on Twitter APIs, because they know that using APIs
will distinguish their tweets from normal tweets. For
instance, tweetattacks.com [27] sells a Twitter spam
program that uses the Web interface to deceive spam
receivers and to circumvent API limits
Design Goals: To provide URL spam filtering as a
service, we adopt six design goals targeting both
efficiency and accuracy:
1) Real-time results. Social networks and email
operate as near-interactive, real-time services. Thus,
significant delays in filtering decisions degrade the
protected service.
2) Readily scalable to required throughput. We
aim to provide viable classification for services such
as Twitter those receive over 15 million URLs a day.
3) Accurate decisions. We want the capability to
emphasize low false positives in order to minimize
mistaking non- spam URLs as spam.
4) Fine-grained classification. The system should
be capable of distinguishing between spam hosted on
Public services alongside non-spam content (i.e.,
classification of individual URLs rather than coarser-
grained domain names).
5) Tolerant to feature evolution. The arms-race
nature of spam leads to ongoing innovation on the
part of spammers efforts to evade detection. Thus, we
require the ability to easily retrain to adapt to new
features.
6) Context-independent classification. If possible,
decisions should not hinge on features specific to a
particular service, allowing use of the classifier for
different types of web services.
Proposed Mechanism
In this work we present the design and
implementation of Novel system for filtering spam
URLs in real-time as they are posted to web
applications. Classification operates independently of
the context where a URL appears (e.g., blog
comment, tweet, or email), giving rise to the
possibility of spam URL filtering as a service. We
intend the system to act as a first layer of defense
against spam content targeting web services,
including social networks, URL shorteners, and
email.
4.1 Motivation and Basic Idea
Our goal is to develop a suspicious URL detection
system for Twitter that is robust enough to protect
against conditional redirections. Consider a simple
example of conditional redirections (Fig. 4), in which
an attacker creates a long URL redirect chain using a
public URL shortening service, such as bit.ly and t.co,
as well as the attacker’s own private redirection
servers used to redirect visitors to a malicious landing

 International Multidisciplinary Research Foundation 266

Engineering Sciences International Research Journal Volume 1 Issue 2 (2013) ISSN 2320-4338

page. The attacker then uploads a tweet including the
initial URL of the redirect chain to Twitter. Later,
when a user or a crawler visits the initial URL, he or
she will be redirected to an entry point of the
intermediate URLs that are associated with private
redirection servers. Some of these redirection servers
check whether the current visitor is a normal browser
or a crawler. If the current visitor seems to be a
normal browser, the servers redirect the visitor to a
malicious landing page. If not, they will redirect the
visitor to a benign landing page. Therefore, the
attacker can selectively attack normal users while
deceiving investigators. The above example shows
that, as investigators, we cannot fetch the content of
malicious landing URLs, because attackers do not
reveal them to us. We also cannot rely on the initial
URLs, as attackers can generate a large number of
different initial URLs by abusing URL shortening
services.
4.2 URL Aggregation: Our current architecture
aggregates URLs from two sources for training and
testing purposes: links emailed to spam traps
operated by a number of major email providers and
links appearing in Twitter’s streaming API. In the
case of Twitter, we also have contextual information
about the account and tweet associated with a URL.
However, we hold to our design goal of remaining
agnostic to the source of a URL and omit this
information during classification. We examine how
removing Twitter-specific features affects accuracy as
shown in figure 1.
4.3 Feature Collection: During feature collection,
the system visits a URL with an instrumented version
of the Google Chrome web browser to collect page

content including HTML and page links, monitor
page behavior such as pop-up windows and
JavaScript activity, and discover hosting
infrastructure. We explore the motivation behind
each of these features. To ensure responsiveness and
adhere to our goal of real-time, scalable execution, we
design each process used for feature collection to be
self-contained and parallelizable. In our current
architecture, we implement feature collection using
cloud machinery, allowing us to spin up an arbitrary
number of collectors to handle the system’s current
workload.
4.4 Feature Extraction: Before classification, we
transform the raw data generated during feature
collection into a sparse feature vector understood by
the classification engine. Data transformations
include tokenizing URLs into binary features and
converting HTML content into a bag of words. We
permanently store the raw data, which allows us to
evaluate new transformations against it over time.
4.5 Classification: The final phase of the system flow
produces a classification decision. Training of the
classifier occurs off-line and independent of the main
system pipeline, leaving the live decision as a simple
summation of classifier weights. During training, we
generate a labeled data set by taking URLs found
during the feature collection phase that also appear
in spam traps or blacklists. We label these samples as
spam, and all other samples as non-spam. Finally, in
order to handle the millions of features that result
and re-train daily to keep pace with feature evolution,
we develop a distributed logistic regression, as
discussed.

FIGURE 1

1.URL Aggregation 2.Feature Collection 3.Feature Aggregation 4.Classifier

5.4 Proxy and Whitelist
To reduce network delay, Monarch proxies all
outgoing network requests from a crawling instance
through a single cache containing previous HTTP and
DNS results. In addition, we employ a whitelist of
known good domains and refrain from crawling them
further if they appear during a redirect chain as a top-
level window; their presence in IFrames or pop-up

windows does not halt the surrounding collection
process. Whitelists require manual construction and
include trusted, high-frequency domains that do not
support arbitrary user content. Our current whitelist
contains 200 domains, examples of which include
nytimes.com, flickr.com, and youtube.com.
Whitelisted content accounts for 32% of URLs visited
by our crawlers. The remaining content falls into a

 International Multidisciplinary Research Foundation 267

A SURVEY ON WARNING BIRD: A NEAR REAL-TIME DETECTION SYSTEM

long tail distribution of random hostnames, 67% of
which appear once and 95% of which appear at most
10 times in our system. While we could expand the
whitelist, in practice this proves unnecessary and
provides little performance improvement.
Discussion
6.1Dynamic redirection: Currently,
WARNINGBIRD uses a static crawler written in
Python. Because it can only handle HTTP
redirections, it is ineffective on pages that have
embedded dynamic redirections such as JavaScript or
Flash redirection. Therefore, WARNINGBIRD will
designate pages with embedded dynamic redirection
as entry point URLs. This determination causes
inaccuracy in some of the feature values, including
the redirect chain lengths, positions of the entry
point URLs, and the number of different landing
URLs. Therefore, in the future we will use customized
Web browsers to fully retrieve redirect chains.
6.2 Multiple redirections: Web pages can embed
several external pages and different content.
Therefore, some pages can cause multiple
redirections. Because our system currently only
considers HTTP redirection and does not consider
page-level redirection, it cannot catch multiple
redirections. Therefore, we need customized
browsers to catch and address multiple redirections.
6.3 Feature evasion methods: Attackers can
fabricate the features of their attacks to evade our
detection system. For instance, they can use short
redirect chains, change the position of their entry
point URLs, reuse initial and landing URLs, or use a
small number of different domain names and IP
addresses. These modifications, paradoxically, would
allow conventional detection systems to detect their
malicious URLs. Attackers may also be able to reduce
the frequency of their tweets to bypass our detection
system. However, this would also reduce the number
of visitors to their malicious pages. Features derived
from tweet information, however, are relatively weak
at protecting against forgery, as many researchers
have already pointed out [13], [14],. Attackers could
use a large number of source applications and Twitter
accounts, use similar tweet texts, and carefully adjust
the numbers of followers and friends of their
accounts to increase the standard deviation values. In
addition, they could increase the standard deviation
of their account creation date if they own or have
compromised older accounts. Although these
features are weak, attackers have to consume their
resources and time to fabricate these features.
Therefore, using these features is still meaningful.
The strongest evasion method is definitely to increase
the number of redirect servers. This method,
however, would require a lot of resource and large
financial investment on the part of the attackers.

6.6 Adaptation to the other services: Although
WARNINGBIRD is designed for Twitter, with some
simple modifications it can also be applied to other
services that can monitor a continuous URL stream.
For example, we can consider an e-mail service that
continuously processes a large number of e-mails for
its users. Its operators can collect and investigate e-
mails containing URLs. When a proper number of
such e-mails are collected, the URLbased features can
be extracted, such as the length of the URL redirect
chain, the frequency of entry point URLs, and the
number of different initial and landing URLs. The
operators can also extract other features from e-mail
context information such as the number of senders
and receivers, the number of mail servers and relay
servers, and similarities in e-mail messages. Web
forum services are also similar; as their operators can
collect all posts and comments of users containing
URLs and can extract URL-based features as well as
other features including user IDs, IP addresses, and
message similarities. We can modify WARNINGBIRD
to use the above features for detecting suspicious
URLs on those systems. A similar method can also be
applied to other social networking services such as
Facebook and Google+.
Related Work
7.1 Twitter Spam Detection
Many Twitter spam detection schemes have been
introduced. Most have focused on how to collect a
large number of spam and non-spam accounts and
extract the features that can effectively distinguish
spam from nonspam accounts. To detect spam
accounts, some schemes manually analyze the
collected data [11], [12], some use honey-profiles to
lure spammers [6], [10], some monitor the Twitter
public timeline to detect accounts that post tweets
with blacklisted URLs [7], [14], and yet others
monitor Twitter’s official account for spam reporting,
@spam [13]. Many preliminary studies [6], [7], [10]–
[12] rely on account features including the numbers of
followers and friends, account creation dates, URL
ratios, and tweet text similarities, which can be
efficiently collected but easily fabricated. To avoid
feature fabrication, recent work [13], [14] relies on
more robust features extracted from the Twitter
graph. Yang et al. [14] focused on relations between
spam nodes and their neighboring nodes such as a bi-
directional link ratio and betweenness centrality,
because spam nodes usually cannot establish strong
relationships with their neighboring nodes. They also
introduced other features based on timing and
automation. Song et al. [13] considered the relations
between spam senders and receivers such as the
shortest paths and minimum cut, because spam
nodes usually cannot establish robust relationships
with their victim nodes. The extraction of these

 International Multidisciplinary Research Foundation 268

Engineering Sciences International Research Journal Volume 1 Issue 2 (2013) ISSN 2320-4338

robust features, however, is time and resource
consuming. Account and relation feature-based
schemes cannot detect spam messages from
compromised accounts, because the compromised
accounts have benign features. To solve this problem,
Gao et al. [15] proposed a spam detection scheme
using message-based features. They focused on the
syntactic similarity of spam messages. Spammers,
however, can easily fabricate syntactical features of
their spam messages. In addition, studies on the
ecosystem of Twitter spammers and link farming
attacks for increasing spammers’ social influences
have been conducted.
7.2 Suspicious URL Detection
Many suspicious URL detection schemes have been
proposed. They can be classified into either static or
dynamic detection systems. Some lightweight static
detection systems focus on the lexical features of a
URL such as its length, the number of dots, or each
token it has [4], and also consider underlying DNS
and WHOIS information . More sophisticated static
detection systems, such as Prophiler , additionally
extract features from HTML content and JavaScript
codes to detect drive-by download attacks. However,
static detection systems cannot detect suspicious
URLs with dynamic content such as obfuscated
JavaScript, Flash, and ActiveX content. Therefore, we
need dynamic detection systems that use virtual
machines and instrumented Web browsers for in-
depth analysis of suspicious URLs. Nevertheless, all of
these detection systems may still fail to detect
suspicious sites with conditional behaviors.
7.3 Arrow: Generating Signatures to Detect
Driveby Downloads
Zhang et al. have developed ARROW, which also
considers a number of correlated URL redirect chains
to generate signatures of drive-by download attacks.
It uses honey clients to detect drive-by download
attacks and collect logs of HTTP redirection traces
from the compromised honey clients. From these
logs, it identifies central servers that are contained in
a majority of the HTTP traces to the same binaries
and generates regular expression signatures using the
central servers’ URLs. ARROW merges domain names
with the same IP addresses to avoid IP fast flux and
domain flux. Although the methods for detecting
central servers in ARROW and for detecting entry

point URLs in WARNINGBIRD are similar, there are
three important differences between these two
systems. First, ARROW’s HTTP traces are redirect
chains between malicious landing pages and malware
binaries. Therefore, ARROW cannot be applied to
detect other Web attacks, such as spam, scam, and
phishing attacks, which do not have such redirect
chains to enable the downloading of malware
binaries. Moreover, if honeyclients cannot access
malicious landing pages owing to conditional
redirections, ARROW cannot obtain any HTTP
traces. Second, ARROW focuses on how to generate
the signatures of central servers that redirect visitors
to the same malware binaries, whereas
WARNINGBIRD focuses on how to measure the
suspiciousness of entry point URLs. Third, ARROW
relies on logs of HTTP traces to detect central servers.
Therefore, it cannot detect suspicious URLs in real
time. In contrast, WARNINGBIRD is a near real-time
system.
Conclusion
Conventional suspicious URL detection systems are
ineffective in their protection against conditional
redirection servers that distinguish investigators from
normal browsers and redirect them to benign pages
to cloak malicious landing pages. In this paper, we
proposed a new suspicious URL detection system for
Twitter, called WARNINGBIRD. Unlike the
conventional systems, WARNINGBIRD is robust
when protecting against conditional redirection,
because it does not rely on the features of malicious
landing pages that may not be reachable. Instead, it
focuses on the correlations of multiple redirect chains
that share the same redirection servers. We
introduced new features on the basis of these
correlations, implemented a near real-time
classification system using these features, and
evaluated the system’s accuracy and performance.
The evaluation results show that our system is highly
accurate and can be deployed as a near real-time
system to classify large samples of tweets from the
Twitter public timeline. In the future, we will extend
our system to address dynamic and multiple
redirections.
We will also implement a distributed version of
WARNINGBIRD to process all tweets from the
Twitter public timeline.

References

1. S. Lee and J. Kim, “WarningBird: Detecting

suspicious URLs in Twitter stream,” in Proc.

NDSS, 2012.

2. H. Kwak, C. Lee, H. Park, and S. Moon, “What is

Twitter, a social network or a news media?” in

Proc. WWW, 2010.

3. D. Antoniades, I. Polakis, G. Kontaxis, E.

Athanasopoulos, S. Ioannidis,E. P. Markatos, and

T. Karagiannis, “we.b: The web of short URLs,”

in Proc. WWW, 2011.

A SURVEY ON WARNING BIRD: A NEAR REAL-TIME DETECTION SYSTEM

 International Multidisciplinary Research Foundation 269

4. D. K. McGrath and M. Gupta, “Behind phishing:

An examination of phisher modi operandi,” in

Proc. USENIX LEET, 2008.

5. Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia,

“Who is tweeting on Twitter: Human, bot, or

cyborg?” in Proc. ACSAC, 2010. [6] G. Stringhini,

C. Kruegel, and G. Vigna, “Detecting spammers

on social networks,” in Proc. ACSAC, 2010.

6. C. Grier, K. Thomas, V. Paxson, and M. Zhang,

“@spam: The underground on 140 characters or

less,” in Proc. ACM CCS, 2010.

7. S. Chhabra, A. Aggarwal, F. Benevenuto, and P.

Kumaraguru,

8. “Phi.sh/$oCiaL: the phishing landscape through

short URLs,” in Proc. CEAS, 2011.

9. Klien and M. Strohmaier, “Short links under

attack: geographical analysis of spam in a URL

shortener network,” in Proc. ACM HT, 2012.

10. K. Lee, J. Caverlee, and S. Webb, “Uncovering

social spammers: Social honeypots + machine

learning,” in Proc. ACM SIGIR, 2010.

A. Wang, “Don’t follow me: Spam detecting in

Twitter,” in Proc. SECRYPT, 2010.

11. Benevenuto, G. Magno, T. Rodrigues, and V.

Almeida, “Detecting spammers on Twitter,” in

Proc. CEAS, 2010.

12. J. Song, S. Lee, and J. Kim, “Spam filtering in

Twitter using sender receiver

13. relationship,” in Proc. RAID, 2011.

14. C. Yang, R. Harkreader, and G. Gu, “Die free or

live hard? empirical evaluation and new design

for fighting evolving Twitterspammer s,” in Proc.

RAID, 2011.

15. Gao, Y. Chen, K. Lee, D. Palsetia, and A.

Choudhary, “Towards online spam filtering in

social networks,” in Proc. NDSS, 2012.

Assoc. Professor, Department of ECM, KL University, Guntur, A.P., India.

B.Tech, Department of ECM, KL University, Guntur, A.P., India.

Engineering Sciences International Research Journal Volume 1 Issue 2 (2013) ISSN 2320-4338

 International Multidisciplinary Research Foundation 270

