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Abstract: Twitter is prone to malicious tweets containing URLs for spam, phishing, and malware distribution. 
Conventional Twitter spam detection schemes utilize account features such as the ratio of tweets containing 
URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are 
ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL 
detection schemes utilize several features including lexical features of URLs, URL redirection, HTML content, 
and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. In 
this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system 
investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited 
resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop 
methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their 
suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier 
using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We 
also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream. 
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Introduction : Twitter is a famous social networking 
and information sharing service [2] that allows users 
to exchange messages of fewer than 140-character, 
also known as tweets, with their friends. When a user 
Alice updates (or sends) a tweet, it will be distributed 
to all of her followers who have registered Alice as 
one of their friends. Instead of distributing a tweet to 
all of her followers, Alice can also send a tweet to a 
specific twitter user Nuthan by mentioning this user 
by including @Nuthan in the tweet. Unlike status 
updates, mentions can be sent to users who do not 
follow Alice. When Twitter users want to share a URL 
with friends via tweets, they usually use URL 
shortening services [3] to reduce the URL length 
since tweets can contain only a restricted number of 
characters. Bit.ly and tinyurl.com are widely used 
services, and Twitter also provides a shortening 
service t.co. Owing to the popularity of Twitter, 
malicious users often try to find a way to attack it. 
The most common forms of Web attacks, including 
spam, scam, phishing, and malware distribution 
attacks, have also appeared on Twitter. Because 
tweets are short in length, attackers use shortened 
malicious URLs that redirect Twitter users to external 
attack servers [4]–[9]. To cope with malicious tweets, 
several Twitter spam detection schemes have been 
proposed. These schemes can be classified into 
account feature-based [6], [10]–[12], relation feature-
based [13], [14], and message feature-based [15] 
schemes. Account feature-based schemes use the 
distinguishing features of spam accounts such as the 
ratio of tweets containing URLs, the account creation 
date, and the number of followers and friends. 
However, malicious users can easily fabricate these 
account features. The relation feature-based schemes 

rely on more robust features that malicious users 
cannot easily fabricate such as the distance and 
connectivity apparent in the Twitter graph. 
Extracting these relation features from a Twitter 
graph, however, requires a significant amount of time 
and resources as a Twitter graph is tremendous in 
size. The message feature-based scheme focused on 
the lexical features of messages. However, spammers 
can easily change the shape of their messages. A 
number of suspicious URL detection schemes [4] 
have also been introduced. They use static or 
dynamic crawlers, and they may be executed in 
virtual machine honeypots, such as Capture-HPC , 
HoneyMonkey , and Wepawet, to investigate newly 
observed URLs. These schemes classify URLs 
according to several features including lexical 
features of URLs, DNS information, URL redirections, 
and the HTML content of the landing pages. 
Nevertheless, malicious servers can bypass an 
investigation by selectively providing benign pages to 
crawlers. For instance, because static crawlers usually 
cannot handle JavaScript or Flash, malicious servers 
can use them to deliver malicious content only to 
normal browsers. Even if investigators use dynamic 
crawlers with (almost) all of the functionalities of real 
browsers, malicious servers may be able to recognize 
them through their IP addresses, user interaction, 
browser fingerprinting, or honey client detection 
techniques. Malicious servers can also employ 
temporal behaviors providing different content at 
different times—to evade an investigation .In this 
paper, we propose WARNINGBIRD,   the heels of the 
widespread adoption of web services such as social 
networks and URL shorteners, scams, phishing and 
malware have become regular threats. Despite 
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extensive research, email-based spam filtering 
techniques generally fall short for protecting other 
web services. To better address this need, we present 
Novel real-time system that crawls URLs as they are 
submitted to web services and determines whether 
the URLs direct to spam. We evaluate the viability of 
novel and the fundamental challenges that arise due 
to the diversity of web service spam. We show that 
Novel approach can provide accurate, real-time 
protection, but that the underlying characteristics of 
spam do not generalize across web services. In 
particular, we find that spam targeting email 
qualitatively differs in significant ways from spam 
campaigns targeting Twitter. We explore the 
distinctions between email and Twitter spam, 
including the abuse of public web hosting and 
redirect or services. Finally, we demonstrate 
Monarch’s scalability, showing our system could 
protect a service such as Twitter—which needs to 
process 1 million URLs/day  
Case Study : 2.1 blackraybansunglasses.com 
We consider blackraybansunglasses.com, which is a 
suspicious site associated with spam tweets. We first 
encountered this site in April 2011 and it was active 
until August 2011. We used a one percent of a sample 
of tweets collected on July 11,2011,  to conduct an in-
depth analysis of the site blackraybansunglasses.com 
has a page, redirect.php, which conditionally 
redirects users to random spam pages. It uses a 
number of different Twitter accounts and shortened 
URLs to distribute its URL, to other Twitter users. 
According to our dataset, it uses 6,585 different 
Twitter accounts and shortened URLs, and occupies 
about 2.83% of the sampled 232,333 tweets with URLs. 
When a user clicks on one of the shortened URLs 
such as bit.ly/raCz5i distributed by Zarzu he or she 
will be redirected to a private redirection, such as 
beginnersatlanta.tk, which seems to be managed by 
the operator of blackraybansunglasses.com. The user 
will then be repeatedly goes to 
bestfreevideoonline.info. The redirection site 
blackraybansunglasses.com evaluates whether its 
visitors are normal browsers or crawlers using several 
methods, including cookie and user-agent checking. 
When it is sure that a current visitor is a normal 
browser, it redirects the visitor to 
forexstrategysite.com, which then finally redirects 
him or her to random spam pages. When 
blackraybansunglasses.com determines that a current 
visitor is not a normal browser, it simply redirects the 
visitor to google.com to avoid investigation. 
Therefore, crawlers may not be able to see 
forexstrategysite.com or the further spam pages. 
Another interesting point about 
blackraybansunglasses.com is that it uses the Twitter 
Web interface. Conventional Twitter spam detection 

schemes usually assumed that many spammers would 
use Twitter APIs to distribute their spam tweets. 
Advanced Twitter spammers, however, no longer rely 
on Twitter APIs, because they know that using APIs 
will distinguish their tweets from normal tweets. For 
instance, tweetattacks.com [27] sells a Twitter spam 
program that uses the Web interface to deceive spam 
receivers and to circumvent API limits 
Design Goals: To provide URL spam filtering as a 
service, we adopt six design goals targeting both 
efficiency and accuracy: 
1) Real-time results. Social networks and email 
operate as near-interactive, real-time services. Thus, 
significant   delays in filtering decisions degrade the 
protected service. 
2) Readily scalable to required throughput. We 
aim to provide viable classification for services such 
as Twitter those receive over 15 million URLs a day. 
3) Accurate decisions. We want the capability to 
emphasize low false positives in order to minimize 
mistaking non- spam URLs as spam. 
4) Fine-grained classification. The system should 
be capable of distinguishing between spam hosted on 
Public services alongside non-spam content (i.e., 
classification of individual URLs rather than coarser-
grained domain names). 
5) Tolerant to feature evolution. The arms-race 
nature of spam leads to ongoing innovation on the 
part of spammers efforts to evade detection. Thus, we 
require the ability to easily retrain to adapt to new 
features. 
6) Context-independent classification. If possible, 
decisions should not hinge on features specific to a 
particular service, allowing use of the classifier for 
different types of web services. 
Proposed Mechanism 
In this work we present the design and 
implementation of Novel system for filtering spam 
URLs in real-time as they are posted to web 
applications. Classification operates independently of 
the context where a URL appears (e.g., blog 
comment, tweet, or email), giving rise to the 
possibility of spam URL filtering as a service. We 
intend the system to act as a first layer of defense 
against spam content targeting web services, 
including social networks, URL shorteners, and 
email. 
4.1 Motivation and Basic Idea 
Our goal is to develop a suspicious URL detection 
system for Twitter that is robust enough to protect 
against conditional redirections. Consider a simple 
example of conditional redirections (Fig. 4), in which 
an attacker creates a long URL redirect chain using a 
public URL shortening service, such as bit.ly and t.co, 
as well as the attacker’s own private redirection 
servers used to redirect visitors to a malicious landing 
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page. The attacker then uploads a tweet including the 
initial URL of the redirect chain to Twitter. Later, 
when a user or a crawler visits the initial URL, he or 
she will be redirected to an entry point of the 
intermediate URLs that are associated with private 
redirection servers. Some of these redirection servers 
check whether the current visitor is a normal browser 
or a crawler. If the current visitor seems to be a 
normal browser, the servers redirect the visitor to a 
malicious landing page. If not, they will redirect the 
visitor to a benign landing page. Therefore, the 
attacker can selectively attack normal users while 
deceiving investigators. The above example shows 
that, as investigators, we cannot fetch the content of 
malicious landing URLs, because attackers do not 
reveal them to us. We also cannot rely on the initial 
URLs, as attackers can generate a large number of 
different initial URLs by abusing URL shortening 
services. 
4.2 URL Aggregation: Our current architecture 
aggregates URLs from two sources for training and 
testing purposes: links emailed to spam traps 
operated by a number of major email providers and 
links appearing in Twitter’s streaming API. In the 
case of Twitter, we also have contextual information 
about the account and tweet associated with a URL. 
However, we hold to our design goal of remaining 
agnostic to the source of a URL and omit this 
information during classification. We examine how 
removing Twitter-specific features affects accuracy as 
shown in figure 1. 
4.3 Feature Collection:  During feature collection, 
the system visits a URL with an instrumented version 
of the Google Chrome web browser to collect page 

content including HTML and page links, monitor 
page behavior such as pop-up windows and 
JavaScript activity, and discover hosting 
infrastructure. We explore the motivation behind 
each of these features. To ensure responsiveness and 
adhere to our goal of real-time, scalable execution, we 
design each process used for feature collection to be 
self-contained and parallelizable. In our current 
architecture, we implement feature collection using 
cloud machinery, allowing us to spin up an arbitrary 
number of collectors to handle the system’s current 
workload. 
4.4 Feature Extraction: Before classification, we 
transform the raw data generated during feature 
collection into a sparse feature vector understood by 
the classification engine. Data transformations 
include tokenizing URLs into binary features and 
converting HTML content into a bag of words. We 
permanently store the raw data, which allows us to 
evaluate new transformations against it over time. 
4.5 Classification: The final phase of the system flow 
produces a classification decision. Training of the 
classifier occurs off-line and independent of the main 
system pipeline, leaving the live decision as a simple 
summation of classifier weights. During training, we 
generate a labeled data set by taking URLs found 
during the feature collection phase that also appear 
in spam traps or blacklists. We label these samples as 
spam, and all other samples as non-spam. Finally, in 
order to handle the millions of features that result 
and re-train daily to keep pace with feature evolution, 
we develop a distributed logistic regression, as 
discussed. 

FIGURE 1 

1.URL Aggregation            2.Feature Collection         3.Feature Aggregation  4.Classifier
 
5.4 Proxy and Whitelist 
To reduce network delay, Monarch proxies all 
outgoing network requests from a crawling instance 
through a single cache containing previous HTTP and 
DNS results. In addition, we employ a whitelist of 
known good domains and refrain from crawling them 
further if they appear during a redirect chain as a top-
level window; their presence in IFrames or pop-up 

windows does not halt the surrounding collection 
process. Whitelists require manual construction and 
include trusted, high-frequency domains that do not 
support arbitrary user content. Our current whitelist 
contains 200 domains, examples of which include 
nytimes.com, flickr.com, and youtube.com. 
Whitelisted content accounts for 32% of URLs visited 
by our crawlers. The remaining content falls into a 
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long tail distribution of random hostnames, 67% of 
which appear once and 95% of which appear at most 
10 times in our system. While we could expand the 
whitelist, in practice this proves unnecessary and 
provides little performance improvement. 
Discussion 
6.1Dynamic redirection: Currently, 
WARNINGBIRD uses a static crawler written in 
Python. Because it can only handle HTTP 
redirections, it is ineffective on pages that have 
embedded dynamic redirections such as JavaScript or 
Flash redirection. Therefore, WARNINGBIRD will 
designate pages with embedded dynamic redirection 
as entry point URLs. This determination causes 
inaccuracy in some of the feature values, including 
the redirect chain lengths, positions of the entry 
point URLs, and the number of different landing 
URLs. Therefore, in the future we will use customized 
Web browsers to fully retrieve redirect chains. 
6.2 Multiple redirections: Web pages can embed 
several external pages and different content. 
Therefore, some pages can cause multiple 
redirections. Because our system currently only 
considers HTTP redirection and does not consider 
page-level redirection, it cannot catch multiple 
redirections. Therefore, we need customized 
browsers to catch and address multiple redirections. 
6.3 Feature evasion methods: Attackers can 
fabricate the features of their attacks to evade our 
detection system. For instance, they can use short 
redirect chains, change the position of their entry 
point URLs, reuse initial and landing URLs, or use a 
small number of different domain names and IP 
addresses. These modifications, paradoxically, would 
allow conventional detection systems to detect their 
malicious URLs. Attackers may also be able to reduce 
the frequency of their tweets to bypass our detection 
system. However, this would also reduce the number 
of visitors to their malicious pages. Features derived 
from tweet information, however, are relatively weak 
at protecting against forgery, as many researchers 
have already pointed out [13], [14],. Attackers could 
use a large number of source applications and Twitter 
accounts, use similar tweet texts, and carefully adjust 
the numbers of followers and friends of their 
accounts to increase the standard deviation values. In 
addition, they could increase the standard deviation 
of their account creation date if they own or have 
compromised older accounts. Although these 
features are weak, attackers have to consume their 
resources and time to fabricate these features. 
Therefore, using these features is still meaningful. 
The strongest evasion method is definitely to increase 
the number of redirect servers. This method, 
however, would require a lot of resource and large 
financial investment on the part of the attackers.  

6.6 Adaptation to the other services: Although 
WARNINGBIRD is designed for Twitter, with some 
simple modifications it can also be applied to other 
services that can monitor a continuous URL stream. 
For example, we can consider an e-mail service that 
continuously processes a large number of e-mails for 
its users. Its operators can collect and investigate e-
mails containing URLs. When a proper number of 
such e-mails are collected, the URLbased features can 
be extracted, such as the length of the URL redirect 
chain, the frequency of entry point URLs, and the 
number of different initial and landing URLs. The 
operators can also extract other features from e-mail 
context information such as the number of senders 
and receivers, the number of mail servers and relay 
servers, and similarities in e-mail messages. Web 
forum services are also similar; as their operators can 
collect all posts and comments of users containing 
URLs and can extract URL-based features as well as 
other features including user IDs, IP addresses, and 
message similarities. We can modify WARNINGBIRD 
to use the above features for detecting suspicious 
URLs on those systems. A similar method can also be 
applied to other social networking services such as 
Facebook and Google+. 
Related Work 
7.1 Twitter Spam Detection 
Many Twitter spam detection schemes have been 
introduced. Most have focused on how to collect a 
large number of spam and non-spam accounts and 
extract the features that can effectively distinguish 
spam from nonspam accounts. To detect spam 
accounts, some schemes manually analyze the 
collected data [11], [12], some use honey-profiles to 
lure spammers [6], [10], some monitor the Twitter 
public timeline to detect accounts that post tweets 
with blacklisted URLs [7], [14], and yet others 
monitor Twitter’s official account for spam reporting, 
@spam [13]. Many preliminary studies [6], [7], [10]–
[12] rely on account features including the numbers of 
followers and friends, account creation dates, URL 
ratios, and tweet text similarities, which can be 
efficiently collected but easily fabricated. To avoid 
feature fabrication, recent work [13], [14] relies on 
more robust features extracted from the Twitter 
graph. Yang et al. [14] focused on relations between 
spam nodes and their neighboring nodes such as a bi-
directional link ratio and betweenness centrality, 
because spam nodes usually cannot establish strong 
relationships with their neighboring nodes. They also 
introduced other features based on timing and 
automation. Song et al. [13] considered the relations 
between spam senders and receivers such as the 
shortest paths and minimum cut, because spam 
nodes usually cannot establish robust relationships 
with their victim nodes. The extraction of these 
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robust features, however, is time and resource 
consuming. Account and relation feature-based 
schemes cannot detect spam messages from 
compromised accounts, because the compromised 
accounts have benign features. To solve this problem, 
Gao et al. [15] proposed a spam detection scheme 
using message-based features. They focused on the 
syntactic similarity of spam messages. Spammers, 
however, can easily fabricate syntactical features of 
their spam messages. In addition, studies on the 
ecosystem of Twitter spammers and link farming 
attacks for increasing spammers’ social influences 
have been conducted. 
7.2 Suspicious URL Detection 
Many suspicious URL detection schemes have been 
proposed. They can be classified into either static or 
dynamic detection systems. Some lightweight static 
detection systems focus on the lexical features of a 
URL such as its length, the number of dots, or each 
token it has [4], and also consider underlying DNS 
and WHOIS information . More sophisticated static 
detection systems, such as Prophiler , additionally 
extract features from HTML content and JavaScript 
codes to detect drive-by download attacks. However, 
static detection systems cannot detect suspicious 
URLs with dynamic content such as obfuscated 
JavaScript,  Flash, and ActiveX content. Therefore, we 
need dynamic detection systems that use virtual 
machines and instrumented Web browsers for in-
depth analysis of suspicious URLs. Nevertheless, all of 
these detection systems may still fail to detect 
suspicious sites with conditional behaviors. 
7.3 Arrow: Generating Signatures to Detect 
Driveby Downloads 
Zhang et al. have developed ARROW, which also 
considers a number of correlated URL redirect chains 
to generate signatures of drive-by download attacks. 
It uses honey clients to detect drive-by download 
attacks and collect logs of HTTP redirection traces 
from the compromised honey clients. From these 
logs, it identifies central servers that are contained in 
a majority of the HTTP traces to the same binaries 
and generates regular expression signatures using the 
central servers’ URLs. ARROW merges domain names 
with the same IP addresses to avoid IP fast flux and 
domain flux. Although the methods for detecting 
central servers in ARROW and for detecting entry 

point URLs in WARNINGBIRD are similar, there are 
three important differences between these two 
systems. First, ARROW’s HTTP traces are redirect 
chains between malicious landing pages and malware 
binaries. Therefore, ARROW cannot be applied to 
detect other Web attacks, such as spam, scam, and 
phishing attacks, which do not have such redirect 
chains to enable the downloading of malware 
binaries. Moreover, if honeyclients cannot access 
malicious landing pages owing to conditional 
redirections, ARROW cannot obtain any HTTP 
traces. Second, ARROW focuses on how to generate 
the signatures of central servers that redirect visitors 
to the same malware binaries, whereas 
WARNINGBIRD focuses on how to measure the 
suspiciousness of entry point URLs. Third, ARROW 
relies on logs of HTTP traces to detect central servers. 
Therefore, it cannot detect suspicious URLs in real 
time. In contrast, WARNINGBIRD is a near real-time 
system. 
Conclusion 
Conventional suspicious URL detection systems are 
ineffective in their protection against conditional 
redirection servers that distinguish investigators from 
normal browsers and redirect them to benign pages 
to cloak malicious landing pages. In this paper, we 
proposed a new suspicious URL detection system for 
Twitter, called WARNINGBIRD. Unlike the 
conventional systems, WARNINGBIRD is robust 
when protecting against conditional redirection, 
because it does not rely on the features of malicious 
landing pages that may not be reachable. Instead, it 
focuses on the correlations of multiple redirect chains 
that share the same redirection servers. We 
introduced new features on the basis of these 
correlations,  implemented a near real-time 
classification system using these features, and 
evaluated the system’s accuracy and performance. 
The evaluation results show that our system is highly 
accurate and can be deployed as a near real-time 
system to classify large samples of tweets from the 
Twitter public timeline. In the future, we will extend 
our system to address dynamic and multiple 
redirections. 
We will also implement a distributed version of 
WARNINGBIRD to process all tweets from the 
Twitter public timeline. 
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