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Abstract: The effects of temperature dependent viscosity, internal heat source, temperature modulation and 
thermo-mechanical anisotropy on heat transport in a low-porosity medium are studied using the Ginzburg-
Landau model. The amplitudes of temperature modulation at both the boundaries are considered to be very 
small, and the disturbances are expanded in terms of power series of amplitude of convection. A weak 
nonlinear stability analysis has been performed for the stationary mode of convection, and heat transport in 
terms of the Nusselt number, which is governed by the nonautonomous Ginzburg-Landau equation, is 
calculated. The effects of thermorheological parameter, internal Rayleigh number, amplitude and frequency of 
modulation, thermo mechanical anisotropies and Darcy-Prandtl number on heat transport have been analyzed 
and depicted graphically. It is found that increments in the values of thermo-rheological parameter and 
internal Rayleigh number result in enhancement of heat transport in the system. Further, temperature 
modulation can be used to control the heat transport effectively by a mechanism that is external to the system. 
 
Keywords: Ginzburg-Landau model, Temperature modulation, Anisotropic porous media, Temperature-
dependent viscosity, Internal heating. 

Introduction: Venezian (1969) was first to perform a 
linear stability analysis of Rayleigh-Bénard 
convection, for the case of small amplitude 
temperature modulation. The analog of this problem 
in porous media was introduced by Caltagirone 
(1976). Chhuon and Caltagirone (1979), Malashetty 
and Wadi (1999), Bhadauria (2007a,c), Bhadauria 
(2008a,b), Bhadauria and Sherani (2008), Bhadauria 
and Suthar (2009), Bhadauria and Srivastava (2010) 
are some other works available in the literature 
considering temperature modulation. 
The present paper deals with internal heating effect 
on thermal instability over a porous medium. It is an 
extension of our recent paper Bhadauria and Palle 
Kiran (2013), in which we have investigated the effect 
of temperature dependent viscosity on heat transport 
in anisotropic porous layer. The effect of temperature 
dependent viscosity extensively investigated by Nield 
(1996), Holzbecher (1998), Rees et al. (2002), 
Siddheshwar and Chan (2004), Vanishree and 
Siddheshwar (2010), Srivastava et al.(2013) for 
different physical configuration of the problem. 
Internal heat generation is very important in many 
applications including storage of radioactive 
materials, combustion and fire studies, geophysics, 
reactor safety analysis. However, there are only few 
studies available in which the effect of internal 
heating on convective flow investigated: Bhattacharya 
and Jena, (1984), Rionero and Straughan, (1990), Rao 
and Wang (1991), Parthiban and Patil (1997), Herron 
Isom (2001), Joshi et al.(2006), Bhadauria et al.(2011), 
Bhadauria (2012) and Bhadauria et al. (2013a,b,c). Our 
interest here is the thermo-rheological parameter 
which arises due to temperature-dependent viscosity, 

and can be used to control the convective flow. Also 
internal heating of the system can play an important 
role in controlling the convection. Therefore, it is 
with this motive that we have investigated the effect 
of temperature modulation, thermo-rheological 
parameter, and internal heating on heat transport. 
Governing Equations: we consider an infinitely 
extended horizontal anisotropic porous layer, 
saturated by variable viscosity newtonian fluid, 
confined between two impermeable boundaries at z = 
0 and z = d, which are heated from below and cooled 
from above in a time periodic manner. we choose 
cartesian frame of reference with origin in the lower 
boundary and the z=d axis vertically upward given in 
fig.1. it is assumed that the mechanical properties and 
thermal properties in x and y-directions are same. 
further, darcy law and the oberbeck-boussinesq 
approximation are taken to be applicable. 

 
The equations which describe this system under 
above considerations are given by 
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where q
r

is velocity (u, v, w),  Q is internal heat 

source, φ  is the porosity of the medium, ( T )µ  

temperature dependant variable viscosity, 
1 1ˆˆ ˆˆ ˆ ˆ(i i jj)
x z

K K K kk− −= + +  is the permeability tensor, 

ˆˆ ˆˆ ˆ ˆ(i i jj)
T Tx Tz

kkκ κ κ= + + is the thermal diffusivity, T 

is temperature, 
Tβ  is thermal expansion coefficient, 

γ  is the ratio of heat capacities, ρ  is the density, 

while 0ρ  is the reference density, g is the 

acceleration due to gravity. 
   III. MATHEMATICAL FORMULATION 
The externally imposed surface temperature are 
considered as 
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where δ is small amplitude of temperature 
modulation, ω is modulation frequency and  is the 
phase difference. The thermo-rhelogical relationship 
Eq.(5) is guided by Nield (1996). The basic state is 
assumed to be quiescent and the quantities in the 
state are given by 
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The basic temperature field Eq.(9) has been solved 
subject to the thermal boundary conditions Eq.(6), 
and the solution is found to be of the form 
           2

1(z, t) ( ) R e{ (z , t)} ,b sT T z Tε δ= + (11) 

where ( )sT z the steady temperature is field and 1T  is 

the oscillating part, while Re stands for the real part. 
We impose finite amplitude perturbations on the 
basic state in the form: 
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Substituting Eq. (12) into Eqs. (1) - (5), we get the 
following equations 
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We consider only two-dimensional disturbances in 
our study, and hence the stream function ψ  may be 

introduced in the form: 
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Eliminating the pressure term p from Eq. (14) and 
then non dimensionlizing the equations using the 
following scales: 
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we get the non-dimensional governing equations in 
the form: 

  
2

21 1
(T ) ,

Pr
T

D

T
Ra

t x z z
ξ

ψ µ ψ
µ ψ

ξ

∂∇ ∂ ∂ ∂
= − ∇ − −

∂ ∂ ∂ ∂
(19) 

   2 ( , )
( )

(x, z)

b
i

T T T
R T

x z t
η

ψ ψ∂∂ ∂ ∂
− − ∇ + = − +
∂ ∂ ∂ ∂

,  (20) 

where
2

1
( )

1
T

VT
µ

ε
=

+
, T z

T

Tz

g TdK
Ra

β

νκ

∆
= is 

thermal Rayleigh number, 
2

PrD
z Tz

d

K

φν

κ
= is Darcy 

Prandtl number, 
2

i

Tz

Qd
R

κ
= is internal Rayleigh 
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0V Tδ= ∆ is the thermo-rheological 

parameter or variable viscosity parameter. The non-

dimensional basic temperature ( , )bT z t  which 

appears in the Eq. (20) can be obtained from Eq.(11) as 
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To keep the time variation slow we have rescaled the 

time t by using the time scale
2

tτ ε= . Also the value 
of γ  has been taken equal to one for simplicity. It is 

to be noted that the system is not being considered to 
be over stable as we are interested only in stationary 
convection. We re-write the nonlinear Eqs. (19) - (20) 
in the matrix form as given below: 
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The boundary condition to solve Eq. (23) are: 

WEAKLY NONLINEAR CONVECTION IN A VARIABLE VISCOSITY FLUID 

IMRF Journals                                                                                                                                                                                       2 



               0,      0    o n     z= 1

0,      1   o n     z= 0

T

T

ψ

ψ

= =

= =
  (24) 

Heat Transport:  
We introduce the following asymptotic expansion in 
Eq.(23): 
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where 0cR  is the critical Rayleigh number at which 

the onset of convection takes place in the absence of 
modulation. Using Eqs.(25)-(27) in Eq. (23) we solve 
the system for different orders of ε . At the lowest 

order, we have   
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The solution of the lowest order system subject to the 
boundary conditions Eq.(24), is 
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Rayleigh number for the onset of stationary 
convection is calculated numerically, and the 
expression is given by: 
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heating we have: 
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which are the classical results of Epherre, (1975). If we 
take 1ξ η= = ,then we get the classical results of 

Lapwood (1948), for isotropic porous medium. 
At the second order, we have 
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The second order solutions subjected to the boundary 
conditions Eq.(24), is obtained as 
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The horizontally averaged Nusselt number, Nu, for 
the stationary convection (the mode considered in 
this problem) is given by: 
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Substituting  Eqs. (21) and (39) in Eq.(40) and 
simplifying, we get 
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We must note here that 2f  is effective at 
2( )O ε  and 

affects Nu(t) through A( )τ  as shown next. 

At the third order, we have 
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Substituting 1ψ ,
1T and 

2T  into Esq.(42)-(43), and 

applying the solvability condition for the existence of 
third order solution, we get the Ginzburg-Landau 
equation in the form 
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The above Ginzburg-Landau equation (45) has been 
solved numerically using the inbuilt function 
NDSolve of Mathmatica 8.0, subject to the suitable 
initial condition A(0) = a0, where a0 is the chosen 
initial amplitude of convection. In our calculations 

we may assume 2 0cR Ra= , to keep the parameters to 
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the minimum. 
Results And Discussion: A weakly nonlinear 
stability analysis has been performed to investigate 
the combined effect of internal heating and 
temperature modulation on thermal instability in a 
temperature dependent viscous fluid saturated 
closely packed anisotropic porous medium. The effect 
of temperature modulation on the Bénard-Darcy 
system has been assumed to be of order O(ɛ2). This 
means, we consider only small amplitude 
temperature modulation. The work of Nield (1996), 
has been used for the thermo-rheological relationship 
of temperature dependant viscosity of the fluid. 
The temperature modulation has been considered in 
the following three cases: 

• In-phase modulation (IPM) ( 0θ = ). 

• Out-phase modulation (OPM) (θ π= ). 

• Only Lower boundary modulated (LBMO)     

( iθ = − ∞ ).which means only lower boundary 
temperature is modulated, the upper boundary is 
kept at constant temperature.  
Since the porous medium is assumed to be closely 
packed, the Darcy-model is considered in governing 
equation. The parameters that arise in this study of 
convection and influence the heat transport are Ri, V, 

PrD, ξ , η , δ, ω and θ. The first five are related to the 

properties of fluid and porous media, and last three 
are external mechanism for controlling convection. 

 

 
Vadasz (1998), pointed out that in unmodulated case 
there are many real situations in which the value of 
PrD is very large, therefore one can neglect the time-
derivative term in Darcy Eq.(19). Further, he points 
out that there are however some modern porous 
medium applications, such as mushy layer in 
solidification of binary alloys and fractured porous 
medium, where the value of PrD may be considered of 
the order unity, therefore the time-derivative term in 
the present study has been retained. This is the 
reason that we have kept the values of PrD around 

one in our calculations, and retained the local  
 
acceleration term 1

P rD

q

τ

∂

∂
. The values of Ri are 

considered to be moderate so that it will not affect 
the effect of temperature modulation of the system 
by dominating it otherwise. The values of δ are 

consider very small around 0.2, since we are studying 
the effect of small amplitude modulation on the heat 
transport. Also, the effect of low frequencies, is 
maximum, on the onset of convection as well as on 
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the heat transport, therefore the modulation of temperature is assumed to be 
 
 

 
 
of low frequency. Further, the value of thermo-
rheological parameter, V is also considered to be 
small.  
Figures (2), (3) and (4) present the numerical results 
for Nu(τ), obtained from the expression in Eq.(41)  by 
solving the amplitude Eq.(45). It is clear to see the 
expression in Eq.(45) in conjunction with Eq.(41) that 
Nu(τ) is a function of internal heating parameter Ri, 
Darcy-Prandtl number PrD, thermo-rheological 
parameter V,  thermo-mechanical anisotropy 
parameters ξ  and η , and the amplitude and 

frequency of modulation, δ and ω. The effect of each 
type of modulation on heat transport is shown in 
Figs.(2-4) wherein the plots of Nusselt number Nu(τ) 
verses τ are presented. It is found from the figures 
that the value of Nu(τ) starts with one and remains 
constant for quite some time, thus showing the 
conduction state initially. Then the value of Nu(τ) 
increases with time, thus showing the convection 
state and finally becomes constant on further 

increasing τ thus achieving the study state.  
Figs.(2a-g) present the results for IPM. We observe 
that Nu(τ) increases with individual and collective 
increases in the internal Rayleigh number Ri, Darcy-
Prandtl number PrD and thermo-rheological 
parameter V, but decreases with increase in 

mechanical anisotropy ξ . Thus, there is appreciable 

enhancement in heat transport on increasing Ri, PrD 
and V thereby advancing the onset of convection. 
However, the heat transport decreases on increasing

ξ , thus delaying the convection. The effects of PrD 

and ξ  on heat transport diminish at large values of 

time τ. Further, the amplitude of modulation δ and 
the frequency modulation ω both have negligible 
effects on heat transport in this case. Further, an 
increment in thermal anisotropic parameterη , 

decreases Nu(τ) initially and then increases with 
time. Thus the effect of mechanical and thermal 
anisotropy is found to be opposite at large time, 
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compatible with the results of Epherre (1975), 
Kuznetsov and Nield (2008) and Bhadauria and Kiran 
(2013) obtained for the unmodulated case. However 
at small time τ, the effect of thermal anisotropy η  is 

similar to ξ  which is just opposite to the 

unmodulated case. This is because of interplay 
between internal heat generation and temperature 
modulation of the boundaries. It is also found that 
the results obtained for the modulated (IPM) and 
unmodulated cases are qualitatively same. Further, 
we observe that the effect of internal heating on heat 
transport in the convective system Fig. (2a), the 
magnitude of Nu(τ) is greater than that in the 
absence of internal heating. The physical reason for 
this is that internal heating advances the onset of 
convection. 
In Figs.(3a-g), we have depicted the variation of Nu(τ) 
with time τ for out of phase modulations. It is found 
that Nu(τ) starts with one, increases with increasing 
time Nu(τ) and then becomes oscillatory. However, 
on further increasing the time, it approaches the 
steady state. We observe from Figs.(3a-e) that the 

effects of Ri, Va, V, ξ  and η  on heat transport are 

found to be similar to those of IPM. Further, we 
found in Fig.(3f) that the effect of amplitude of 
modulation is to increase the magnitude of Nu(τ), 
thus increasing the heat transport and advancing the 
convection. 
Also, from Fig.(3g), we observe that an increase in the 
frequency of modulation decreases the magnitude of 
Nu(τ), and so the effect of frequency of modulation 
on heat transport diminishes. At high frequency the 
effect of temperature modulation on thermal 
instability disappears altogether. This result agrees 
quite well with the linear theory results (Venezian, 
1969), where the correction in the critical value of 
Rayleigh number due to temperature modulation 
becomes almost zero at high frequencies. LBMO 
results followed by OPM, due to this we have not 
presented figures in case of LBMO, but the following 
results can be observed in figure (3h). 

                   
IPM LBMO OPMNu Nu Nu< <  

Most of the results are qualitatively similar to the 
results obtained by Bhadauria et al. (2012,2013c) and 
Siddheshwar et al. (2012a,b,2013). 
Conclusions: The following conclusions are made: 

• Effect of IPM is negligible on heat transport 
in the system. 

• In the case of IPM, the effect of δ and ω are 
also found to be negligible on heat transport. 
• Effect of Ri, V and PrD is to enhance the heat 
transport for all three types of modulations. 

• Effect of mechanical anisotropy ξ  is to 

decrease the heat transport for all three types of 
modulations. 
• Effect of η  on heat transport is negligible for 

all three types of modulations. 
• Heat transport is more in the present case 
than in non-internal heating case of Bhadauria et al. 
(2012), Siddheshwar et al. (2013). 

• In the case of IPM, Nu increase steadily for 
intermediate value of time τ and ultimately becomes 
constant when τ is large. 

• In the case of OPM and LBMO, Nu shows an 
oscillatory nature. 

• The thermo-rheological model of Nield 
(1996), gives physically acceptable results, namely, 
the destabilizing effect on Bénard-Darcy convection 
and thereby an enhanced heat transport. 
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