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Abstract: Heat transfer problems are very important in the field of engineering as well as in biology. For heat 
transfer problems generally analytical solutions are given.  Analytical solutions which allow us to determine 
the exact temperature distribution are only available for limited ideal cases. When analytical solutions are not 
available, graphical solutions are used for complex heat transfer problems. Advances in numerical computing 
now allow us for complex heat transfer problems to be solved rapidly on computers. At present following 
techniques are commonly used (i) Finite-Difference, (ii) Finite element method and (iii) Finite volume method 
[1],[2].In general these methods are routinely used to solve problems in heat transfer, fluid dynamics, stress 
analysis, electrostatics and magnetic etc. Numerical techniques result in an approximate solution, however the 
error can be made very small. Properties (e.g., temperature) are determined at discretepoints in the region of 
interest-these are referred to as nodal pointsor nodes. 
In this paper we have discussed the basics of discretization process and the need of numerical solutions. 
 
Keywords: Numerical solution, Mesh, Discretization, Finite difference, Finite element, Finite volume. 

Introduction: Due to the increasing complexities 
encountered in the development of modern 
technology, analytical solutions usually are not 
available. For these problems, numerical solutions 
obtained using high-speed computer are very use full, 
especially when the geometry of the object of interest 
is irregular, of the boundary conditions are nonlinear. 
In heat transfer analysis, some bodies are considered 
as a ‘lump’. In a ‘lump’ interior temperature remains 
constant during heat transfer. The temperature of 
such bodies can be taken as a function of time only 
[3]. Freezing of food, cooking of food, boiling of eggs 
are some examples of heat transfer problems in daily 
life. The growth rate of microorganism in a food 
product in environmental temperature is another 
example of heat transfer. In numerical analysis, three 
different approaches are commonly used; the finite 
difference, the finite volume and the finite element 
methods. Brief descriptions of the three methods are 
as follows: 
Why Numerical Methods? The ready availability of 
high-speed computers and easy-to-use powerful 
software packages has had a major impact on 
engineering education and practice in recent years. 
Engineers in the past had to rely on analytical skills to 
solve significant engineering problems, and thus they 
had to undergo a rigorous training in mathematics. 
Today’s engineers, on the other hand, have access to 
a tremendous amount of computation power under 
their fingertips, and they results, But they also need 
to understand how calculations are performed by the 
computers to develop an awareness of the process 
involved and the limitations, white avoiding any 
possible pitfalls[4]. 
Limitations Analytical solution methods are limited 
to highly simplified problems in simple geometries. 

The geometry must be such that its entire surface can 
be described mathematically in a coordinate system 
by setting the variables equal to constants. That is, it 
must fit into a coordinates system perfectly with 
nothing sticking out or in. In the case of one-
dimensional heat conduction in a solid sphere 
radiusr , for example, the entire outer surface can be 
described by r =r . Likewise, the surface of a finite 
solid cylinder of radius r and height H can be 
described by r = r  for the side surface and z = 0 and z 
= H for the bottom and top surfaces, respectively. 
Even minor complication in geometry can make an 
analytical solution impossible. For example, a 
spherical object with an extrusion likes a handle at 
some location is impossible to handle analytically 
since the boundary conditions in this case cannot be 
expressed in any familiar coordinate system. In 
dization process of food in stomach is very difficult 
for modeling,because it is an example of lump which 
flows inside the stomach. 
Better Modeling: We mentioned earlier that 
analytical solutions are exact solutions since they do 
not involve any approximations. But this statement 
needs some clarification. Distinction should be made 
between an actual real-world problem and the 
mathematical model that is an idealized 
representation of it. The solutions we get are the 
solutions of mathematical models, and the degree of 
applicability of these solutions to the actual physical 
problems depends on the accuracy of the model. An 
“approximate” solution of a realistic model of a 
physical problem is usually more accurate than the 
“exact” solution of a crude mathematical model. 
When attempting to get an analytical solution to a 
physical problem. There is always the tendency to 
oversimplify the problem to make the mathematical 
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model sufficiently simple to warrant an analytical 
solution. Therefore, it is common practice to ignore 
any effects that cause mathematical complications 
such as a nonlinearities in the differential equation or 
the boundary conditions. So it comes as no surprise 
that nonlinearities such as temperature dependence 
of thermal conductivity and the radiation boundary 
conditions are seldom considered in analytical 
solutions. A mathematical model intended for a 
numerical solution is likely to represent the actual 
problem better. Therefore, the numerical solution of 
heat transfer problems has now become the norm 
rather than the exception even when analytical 
solutions are available.  
Flexibility: Heat transfer problems often require 
extensive parametric studies to understand the 
influence of some variables on the solution in order 
to choose the right set of variables and to answer 
some “what-if” questions. This is an iterative process 
that is extremely tedious and time-consuming if done 
by hand. Computers and numerical methods are 
ideally suited for such calculations, and a wide range 
of related problems can be solved by minor 
modifications in the code or input variables. Today it 
is almost unthinkable to perform any significant 
optimization studies in engineering without the 
power and flexibility of computers and numerical 
methods.      
Complications: Some problems can be solved 
analytically, but the solution procedure is so complex 
and the resulting solution expressions so complicated 
that it is not worth all that effort. With the exception 
of steady one-dimensional or transient lumped 
system problems, all heat conduction problems result 
in partial differential equation beyond that acquired 
at the undergraduate level, such as orthogonality, 
Eigen values, Fourier and Laplace transforms, Bessel 
and Legendre functions, and infinite series. In such 
cases, the evaluation of the solution, which often 
involves double or triple summations of infinite series 
at a specified point, is a challenge in itself. 
Human Nature: As human beings, we like to sit back 
and make wishes, and we like our wishes to come 
true without much efforts. The invention of TV 
remote controls made us feel like kings in our homes 
since the commands we give in our comfortable 
chairs by pressing buttons are immediately carried 
out by the obedient TV sets. After all, what good is 
cable TV without a remote control? We certainly 
would love to continue being the king in our little 
cubicle in the engineering office by solving problems 
at the press of a button on a computer (until they 
invent a remote control for the computers, of course). 
Well this might have been a fantasy yesterday, but it 
is a reality today. Practically all engineering offices 
today are equipped with high-powered computers 

with sophisticated software packages, with impressive 
presentation-style colorful output in graphical and 
tabular form. Besides, the results are as accurate as 
the analytical results for all practical purposes. The 
computers have certainly changed the way 
engineering is practiced.  
Overview: Discretization is a cornerstone of 
numerical techniques i.e. numerical solution. An 
analytical solution to a partial differential equation 
gives us the value of f  as a function of the 
independent variables (x_y, z, t). On the other hand, 
the numerical solution provides us the value of  f  at a 
discrete number of points in the domain. These 
points are called grid points, or sometimes as nodes 
or cell centroids, depending on the method. The 
process of converting our governing transport 
equation into a set of equations for the discrete 
values of  f  is called the discretization process and 
the specific methods employed to bring about this 
conversion are called discretization methods[5]. 
The discrete values of f  are typically described by 
algebraic equations relating the values at grid points 
to each other. The development of numerical 
methods focuses on both the derivation of the 
discrete set of algebraic equations, as well as a 
method for their solution. In arriving at these discrete 
equations for f  we will be required to assume how  f  
varies between grid points i.e., to make profile 
assumptions. Most widely used methods for 
discretization require local profile assumptions. That 
is, we prescribe how f varies in the local 
neighborhood surrounding a grid point, but not over 
the entire domain. 
The conversion of a differential equation into a set of 
discrete algebraic equations requires the 
discretization of space. This is accomplished by 
means of mesh generation. Mesh generation divides 
the domain of our interest into elements or cells, and 
associates with each element or cell one or more 
discrete values of  f  . 
Since our aim is to get an answer to the original 
differential equation, it is appropriateto check 
whether our algebraic equation set really gives us 
this. When the number of grid points is small, the 
departure of the discrete solution from the exact 
solution is expected to be large. A well-behaved 
numerical scheme will tend to the exact solution as 
the number of grid points is increased. The rate at 
which it tends to the exact solution depends on the 
type of profile assumptions made in obtaining the 
discretization. No matter what discretization method 
is employed, all well-behaved discretization methods 
should tend to the exact solution when a large 
enough number of grid points are employed. 
a).Mesh Terminology: The physical domain is 
discretized by meshing or gridding .The fundamental 
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unit of the mesh is the cell (sometimes called the 
element). Associated with each cell is the cell 
centroid. A cell is surrounded by faces, which meet at 
nodes or vertices. In three dimensions, the face is a 
surface surrounded by edges. In two dimensions, 
faces and edges are the same. 
b) Types: There are several types of meshes in 
practice. Some are described below. 
Regular and Body-fitted Meshes 
Sometimes our interest lies in analyzing domains 
which are regular in shape i.e. rectangles, cubes, 
cylinders, spheres etc. These shapes can be meshed 
by regular grids. The grid lines are orthogonal to each 
other, and conform to the boundaries of the domain. 
These meshes are also sometimes called orthogonal 
meshes. 
Sometimes the domains of our interest are irregular 
in shape. In such conditions gridlines are not 
necessarily orthogonal to each other, and curve to 
conform to the irregulargeometry. If regular grids are 
used in these geometries, stair stepping occurs at 

domainboundaries. When the physics at the 
boundary are important in determining the solution,  
 
 e.g., in flows dominated by wall shear, such an 
approximation of the boundary may not be 
acceptable. 
 

   
Fig.1. Structured, Block Structured, 
and Unstructured Meshes 
 
The meshes shown in Fig.1 are examples of structured 
meshes. Here, every interior 
vertex in the domain is connected to the same 
number of neighbor vertices. Fig.2. 
shows a block-structured mesh. Here, the mesh is 
divided into blocks, and the 
mesh within each block is structured. 
  

 
Fig.2. Block-structured mesh 

 
However, the arrangement of the blocks themselves 
is not necessarily structured. Fig.3 shows an 
unstructured mesh. Here, each vertex is connected to 
an arbitrary number of neighbor vertices. 
Unstructured meshes impose fewer topological 
restrictions on the user, and as a result, make it easier 
to mesh very complex geometries. 
Conformal and Non-Conformal Meshes: There are 
two conditions for a conformal mesh (6). First the 
intersection between any two elements is a sub 

element of both: a face, an edge, a node or nothing 
(the void set). Second the maximal dimensional 
shared element must be only one and complete. 
When the vertices of a cell or element may fall on the 
faces of neighboring cells or elements.Example of a 
non-conformal mesh is shown in Fig.3. Here, the 
vertices of acell or element may fall on the faces of 
neighboring cells or elements. In contrast, themeshes 
in Figures are conformal meshes. 

 
 

Fig.3. Unstructured mesh 
 
Cell Shapes: Meshes may be constructed using a 
variety of cell shapes. The most widely used are 
quadrilaterals and hexahedra. Methods for generating 
good-quality structured meshes for quadrilaterals and 
hexahedra have existed for some time now. Though 
mesh structure imposes restrictions, structured 
quadrilaterals and hexahedra are well-suited for flows 
with a dominant direction, such as boundary-layer 

flows. More recently, as computational fluid 
dynamics is becoming more widely used for analyzing 
industrial flows, unstructured meshes are becoming 
necessary to handle complex geometries. Here, 
triangles and tetrahedra are increasingly being used, 
and mesh generation techniques for their generation 
are rapidly reaching maturity.  
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Fig.4.Types of cell shapes 

 
Cell Shapes: (a) Triangle, (b) Tetrahedron, (c) Quadrilateral, (d) Hexahedron, 
(e) Prism, and (f) Pyramid 
purpose techniques for generating unstructured 
hexahedra. Another recent trend is the use of hybrid 
meshes. For example, prisms are used in boundary 
layers, transitioning to tetrahedra in the free-stream. 
In this book, we will develop numerical methods 
capable of using all these cell shapes.                                    
Node-Based and Cell-Based Schemes: Numerical 
methods which store their primary unknowns at the 
node or vertex locations are called node-based or 
vertex-based schemes. Those which store them at the 
cell centroid, or associate them with the cell, are 
called cell-based schemes. Finite element methods 
are typically node-based schemes, and many finite 
volume methods are cell-based. For structured and 
block-structured meshes composed of quadrilaterals 
or hexahedra, the number of cells is approximately 
equal to the number of nodes, and the spatial 
resolution of both storage schemes is similar for the 
same mesh. For other cell shapes, there may be quite 
a big difference in the number of nodes and cells in 
the mesh. For triangles, for example, there are twice 
as many cells as nodes, on average. This fact must be 
taken into account in deciding whether a given mesh 
provides adequate resolution for a given problem. 
From the point of view of developing numerical 
methods, both schemes have advantages and 
disadvantages, and the choice will Discretization 
Methods. 
The Finite Difference Method (FDM): This is the 
oldest method for numerical solution of PSEs, 
introduced by Euler in the 18th century. It’s also the 
easiest method to use for simple geometries. The 
starting point is the conservation equation in 
differential form. The solution domain is covered by 
grid. At each grid point, the differential equation id 
approximated by replacing the partial derivatives  by 
approximations in terms of the nodal values of the 
functions. The result is one algebraic equation per 
grid node, in which the variable value at that and a 
certain number of neighbor nodes appear as 
unknowns. 
In principle, the FD method can be applies to any 
grid type. However, in all applications of the FD 
method known, it has been applied to structured 

grids. Taylor series expansion or polynomial fitting is 
used to obtain approximations to the first and second 
derivatives of the variables with respect to the 
coordinates. When necessary, these methods are also 
used to obtain variable values at locations other than 
grid nodes (interpolation). 
On structured grids, the FD method is very simple 
and effective. It is especially easy to obtain higher-
order schemes on regular grids. The disadvantage of 
FD methods is that the conservation is not enforced 
unless special care is taken. Also, the restriction to 
simple geometries is a significant disadvantage  
Finite Volume Method (FVM): The FV method uses 
the integral form of the conservation equations as its 
starting point. The solution domain is subdivided 
into a finite number of contiguous control volumes 
(CVs), and the conservation equations are applied to 
each CV. At the centroid of each CV lies a 
computational node at which the variable values are 
to be calculated. Interpolation is used to express 
variable values at the CV surface in terms of the nodal 
(CV-center) values. As a result, one obtains an 
algebraic equation for each CV, in which a number of 
neighbor nodal values appear. The FVM method can 
accommodate any type of grid when compared to 
FDM, which is applied to only structured grids. The 
FVM approach is perhaps the simplest to understand 
and to program. All terms that need be approximated 
have physical meaning, which is why it is popular. 
Finite Element Method (FEM):The FE method is 
similar to the FV method in many ways. The domain 
is broken into a set of discrete volumes or finite 
elements that are generally unstructured; in 2D, they 
are usually triangles or quadrilaterals, while in 3D 
tetrahedra or hexahedra are most often    used. 
The distinguishing feature of FE methods is that the 
equations are multiplied by a weightfunction before 
they are integrated over the entire domain. In the 
simplest FE methods, thesolution is approximated by 
a linear shape function within each element in a way 
that guarantees continuity of the solution across 
element boundaries. Such a function can 
beconstructed from its values at the corners of the 
elements. The weight function is usually ofthe same 
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form. This approximation is then substituted into the 
weighted integral of the conservation law and the 
equations to be solved are derived by requiring the 
derivative of the integral with respect to each nodal 
value to be zero; this corresponds to selecting the 
best solution within the set of allowed functions (the 
one with minimum residual). The result is a set of 
non-linear algebraic equations. An important 
advantage of finite element methods is the ability to 
deal with arbitrary geometries. Finite element 
methods are relatively easy to analyze mathematically 
and can be shown to have optimality properties for 
certain types of equations. The principal drawback, 
which is shared by any method that uses 
unstructured grids, is that the matrices of the 
linearized equations are not as well structured as 
those for regular grids making it more difficult to find 
efficient solution methods. 

Summary: We note the following about the 
discretization process. 
1. The process starts with the statement of 
conservation over the cell. We then find 
cell values of 
statement. Thus conservation is 
guaranteed for each cell, regardless of mesh size. 
2. Conservation does not guarantee accuracy, 
however. The solution forf
conservative. 
3. The cell balance iswritten in terms of face fluxes. 
The gradient of  f
the faces of the cell. 
4. The profile assumptions for  f S need not be 
the same.The disadvantage of FV methods compared 
to FD schemes is that methods of order higher than 
second are more difficult to develop in 3D. This is due 
to the fact that the FV approach requires two levels of 
approximation: interpolation and integration.

 
References: 
 
1. Vrushali A. Bokil, Nathan L. Gibson, Finite 

Difference, Finite Element and Finite Volume 
Methods for the Numerical Solution of 
PDEs.Corvallis : Department of Mathematics, 
Oregon State University,2007. 

2. Mohammad,R.S and Behnam Niloforooshan 
Dardashti, Heat transfer modeling in multi-layer 
cookware using finite element method, World 
academy of science , engineering and technology, 
pp. 587-593.2012. 

3. Sachdeva, R. C, Fundamentals of Engineering heat 
and mass transfer.Fundamentals of Engineering 

heat and mass transfer. New Delhi : New Age 
International. 161.2010. 

4. Yunus,A, Cengel,Afshin,J and Ghajar, Heat and 
Mass Transfer,McGraw Hill,Newyork,2011. 

5. J.Y.Murthy,S.R and Mathur, Numerical methods in 
heat, mass, and momentum transfer. P,21,2002. 

6. 6.Xu,Min, Conformal 
7. Mesh,2http://cubit.sandia.gov/help

porting_and_exporting_data/geometry_import/im
porting_facet.html,  2010. 

 
 

*** 
         Department of Mathematics, Assoc. Professor , Govt. P. G. College, Jaora (M.P.) 
Department of Mathematics, Assoc. Professor , Govt. P. G. College, Neemuch (M.P.) 

Life  Sciences International Research Journal Volume 1 Issue 1 (2014)                                               ISSN 2347 – 8691 

ISBN 978-81-928281-6-9                                                                                                                                                                   311 


